Edge-Injective and Edge-Surjective Vertex Labellings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-Injective and Edge-Surjective Vertex Labellings

For a graph G = (V,E) we consider vertex-k-labellings f : V → {1, 2, . . . , k} for which the induced edge weighting w : E → {2, 3, . . . , 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and a Sidon set, present a new construction for a so-called restricted additive basis and d...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Edge colouring by total labellings

We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, . . . , k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its two endvertices. We define χt(G) to be the smallest integer k for which G has an edge-colouring ...

متن کامل

Edge-Szeged and vertex-PIindices of Some Benzenoid Systems

The edge version of Szeged index and vertex version of PI index are defined very recently. They are similar to edge-PI and vertex-Szeged indices, respectively. The different versions of Szeged and PIindices are the most important topological indices defined in Chemistry. In this paper, we compute the edge-Szeged and vertex-PIindices of some important classes of benzenoid systems.

متن کامل

On Vertex, Edge, and Vertex-Edge Random Graphs (Extended Abstract)

We consider three classes of random graphs: edge random graphs, vertex random graphs, and vertex-edge random graphs. Edge random graphs are Erdős-Rényi random graphs [9, 10], vertex random graphs are generalizations of geometric random graphs [21], and vertex-edge random graphs generalize both. The names of these three types of random graphs describe where the randomness in the models lies: in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2010

ISSN: 0895-4801,1095-7146

DOI: 10.1137/080723065